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Natural proteins must both fold into a stable conformation and
exert their molecular function. To date, computational design has
successfully produced stable and atomically accurate proteins by
using so-called “ideal” folds rich in regular secondary structures and
almost devoid of loops and destabilizing elements, such as cavities.
Molecular function, such as binding and catalysis, however, often
demands nonideal features, including large and irregular loops and
buried polar interaction networks, which have remained challeng-
ing for fold design. Through five design/experiment cycles, we
learned principles for designing stable and functional antibody vari-
able fragments (Fvs). Specifically, we (i) used sequence-design con-
straints derived from antibody multiple-sequence alignments, and
(ii) during backbone design, maintained stabilizing interactions ob-
served in natural antibodies between the framework and loops of
complementarity-determining regions (CDRs) 1 and 2. Designed Fvs
bound their ligands with midnanomolar affinities and were as sta-
ble as natural antibodies, despite having >30 mutations from mam-
malian antibody germlines. Furthermore, crystallographic analysis
demonstrated atomic accuracy throughout the framework and in
four of six CDRs in one design and atomic accuracy in the entire
Fv in another. The principles we learned are general, and can be
implemented to design other nonideal folds, generating stable, spe-
cific, and precise antibodies and enzymes.
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Due to their versatility, dozens of antibodies are in routine
clinical use to diagnose and treat the most intransigent dis-

eases and thousands more are used as research reagents. These
antibodies were all isolated either by animal immunization or from
synthetic repertoires that mimic the diversity of vertebrate im-
mune systems. Notwithstanding these successes, however, natural
repertoires have limitations, including biases and redundancy in
representing the vast potential sequence and conformation space
available to antibodies, and many antibodies exhibit polyspecificity
and low expressibility, failing to meet the stringent requirements
of research or clinical use (1–3). It has therefore been a long-
standing goal of protein engineering to “build antibodies from
first principles” (4).
Computational protein design has mostly targeted so-called

“ideal” proteins with high secondary-structure content, where polar
backbone atoms form regular, short-range hydrogen bonds (5–9);
irregularities, such as those seen in long loop regions, were almost
absent from these designs. By contrast, the functional surfaces of
most natural proteins, including antibodies, contain nonideal fea-
tures, such as unpaired polar groups, buried charges, and long
loops that are essential for function (10, 11). It has therefore been
postulated that computational design of “nonideal” backbone and
sequence features is of fundamental importance for understanding
protein structure, stability, and function, and may open the way to
the application of computational-design methodology to difficult
problems in design of function (7, 8, 11–13).
The antibody variable fragment (Fv) served us as an exemplary

target for design of nonideal backbones since it comprises six
loop segments in the antigen-binding surface [complementarity-

determining regions (CDRs) L1–L3 in the light chain and CDRs
H1–H3 in the heavy chain]; many other protein folds, including
TIM-barrel enzymes and β-propellers, similarly use loops in ac-
tive sites (7, 11, 12). Furthermore, the antibody Fv comprises two
chains, light and heavy, adding a layer of complexity so far absent
from fold-design studies. Finally, three decades of protein-
engineering experience and the availability of >1,000 antibody
molecular structures suggested that antibody Fv design would
present an excellent opportunity to learn principles of design
of function.

Results
Design Algorithm. Antibody CDR backbones are stabilized by ir-
regular interactions of backbone and amino acid side chains
comprising both short- and long-range contacts, including buried
polar networks. To overcome the challenges in designing such
nonideal features, we developed an algorithm called AbDesign
(14), which operates in three stages (Movie S1): First, natural
antibody Fv backbones are segmented into constituent parts, and
new backbones are designed by recombining segments from
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different natural antibodies; second, these newly designed back-
bones are docked against a target antigenic surface; and, third, for
each backbone segment in the designed antibody, different con-
formations from natural antibodies are sampled and the sequence
is optimized by Rosetta design calculations. To solve the problem
of simultaneously designing a protein fold and its binding activity,
the last step optimizes both antibody stability and binding energy
jointly (15); previous computational-design algorithms, by con-
trast, concentrated on only one feature, either stability or binding,
depending on the application (5, 6, 8, 9, 16, 17).
AbDesign was developed through five consecutive design/ex-

periment cycles, in which a total of 193 designed antibodies were
experimentally evaluated (Table S1 and Dataset S1). We chose two
target antigens, human insulin and the Mycobacterium tuberculosis
acyl-carrier protein (ACP) 2, proteins that are rigid and stable, and
for which no antibody-bound molecular structures were available.
Each design was formatted as a single-chain variable fragment
(scFv) (18), and its expressibility and binding to the designated
antigen were assayed using yeast cell surface display (19). Yeast
display showed that antibodies from the first design cycle had

uniformly low expression levels compared with many natural
antibodies (Fig. 1). Since expression levels are often correlated
with protein stability (20, 21), we reasoned that low expression
indicated design flaws, and through the five design/experiment
cycles, yeast display expression levels served us as an invalu-
able metric to gauge progress as we improved the design al-
gorithm. With the benefit of hindsight, there were two necessary
criteria for designing stable and expressible antibody binders:
(i) preservation of amino acid identities crucial for configuring
the Fv backbone, including buried polar networks, and (ii) iden-
tification of appropriate backbone-segmentation points in the
Fv framework.

A “Learning Loop” of Antibody Design Principles.The most significant
flaw in design cycles 1–3 was unpaired charges and cavities in the
Fv core (Fig. 1). Fold-design studies of the past did not yield such
flaws, because all backbone polar groups in ideal folds form hy-
drogen bonds that stabilize secondary structures (5, 16), whereas
antibody CDRs have many buried polar groups that require
sequence-specific interactions to configure correctly. To address

Fig. 1. Improved antibody expressibility through five design/experiment cycles. The 114 insulin-targeting designs were formatted as scFvs and their yeast
surface expression levels were evaluated in five successive cycles of algorithm development (expression levels are normalized to those of the high-expression
antibody 4m5.3 tested under identical conditions). Molecular representations show flaws observed in early design cycles: cavities (gray) in the protein core
(1ins01) (Left), a buried but unpaired arginine (1ins10) (Center), and failure to maintain a buried hydrogen-bonding network between segments distant in
sequence (3ins17) (Right). Starting in design cycle 4, conformation-dependent sequence constraints were used to guide Rosetta design choices. In this cycle,
the entire Fv (framework and CDRs) was subjected to Rosetta design. Additionally, in cycle 5, the Fv backbone was segmented in two parts in each chain: one
comprising the framework and CDRs 1 and 2 and another comprising CDR 3. Side chains in gray show identities typical of natural antibodies in the relevant
positions. The backbone is rainbow-colored from the amino terminus (blue) to carboxy terminus (red). HC, heavy chain; LC, light chain.
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these sequence-design flaws, starting in cycle 4, we implemented a
conformation-dependent sequence-constraint strategy. Specifically,
all natural Fv backbone conformations were clustered according to
backbone similarity, and for each cluster, a position-specific scoring
matrix (PSSM) was computed (21). As AbDesign assembled Fv
backbones from segments of natural antibodies, it also assembled a
corresponding PSSM to constrain sequence optimization to iden-
tities frequently observed in Fv multiple-sequence alignments.
Since the use of PSSM constraints dramatically reduces sequence
space open to design (14), we opened the entire Fv, comprising
>200 amino acid residues, to sequence design in cycle 4, thereby
optimizing the framework, including the interactions between light
and heavy chains, and the framework’s interactions with the CDRs.
The sequence constraints notwithstanding, designed antibodies
still showed substantial differences from mammalian germlines
(>30 mutations; Dataset S1), demonstrating that the sequence
space open to design was still vast. With the implementation of
conformation-dependent sequence constraints, we observed mod-
est to high expression levels for a majority of designs (Fig. 1). Such
sequence constraints can be applied, in principle, to any natural
protein to improve stability and expressibility (21, 22).
In design cycles 1–4, AbDesign segmented the Fv backbone

into seven parts, comprising a single framework and six CDRs,
following the conventional segmentation used by the majority of
antibody-modeling and -engineering studies of the past three
decades (23, 24) (Fig. 2). In the resulting designs, however, we
observed structural defects, including cavities between CDRs
1 and 2 and the framework, as well as buried and unpaired polar
groups. These observations led us to test whether the backbone
differences among alternative Fv frameworks, albeit small, have
a role in configuring the CDRs. In cycle 5, we therefore seg-
mented each chain into two parts, one encompassing CDRs
1 and 2 and their supporting framework and the other encom-
passing CDR 3 (Fig. 2 and Movie S1). As a boundary between
the two parts within each chain, we chose the disulfide-linked
cysteine proximal to CDR 3, since this disulfide is conserved in
all antibodies both in sequence and structure.
The segmentation of design cycle 5 is similar to the V(D)J

partitioning of all vertebrate antibodies (25), and we saw that
designs using this segmentation retained the intricate hydrogen
bonding observed in natural antibody structures. The designs
also had higher and more realistic core-packing densities com-
pared with cycle 1 designs (Fig. S1). As a result, cycle 5 designs
finally showed uniformly high expression levels (Fig. 1). That

success in designing antibodies with high expression only came by
segmenting the Fv into parts that retained contacts between the
framework and CDR loops suggests a potentially general principle
for computational design: that loop conformation depends on the
scaffold for support, and is sensitive even to small structural per-
turbations in the scaffold. Furthermore, several common antibody-
engineering techniques, including CDR grafting from one antibody
Fv onto a different framework (23), do not retain the contacts
between the framework and the CDRs that are seen here to be
critical for expressibility; not surprisingly, in many cases, these
engineering approaches require subsequent optimization steps to
correct structural flaws (26).

Experimental Characterization. Although, on average, first- and
second-cycle designs showed many defects and low expression,
following extensive manual design, including 32 mutations, one of
the second-cycle ACP-targeting designs, 2acp12, showed high ex-
pression and specifically bound its target ACP (Fig. S2, Table S1,
and Dataset S1). The algorithm of cycle 5 consistently produced
high-expression antibodies, and two additional binders, 5ins16 and
5acp14, which bound insulin and ACP, respectively, were isolated.
As a further indication of improvements in the design algorithm,
cycle 5 designs required substantially fewer (approximately five)
manually introduced mutations than designs from cycles 1–3
(Table S1).
To increase the binders’ affinity for their designated targets, we

used error-prone PCR to introduce one to four random mutations
in the scFv-coding genes of the three designs, followed by yeast
display and fluorescence-activated cell sorting of higher affinity
variants (19). Affinity in isolated clones increased by approximately
an order of magnitude, from Kd = 900 to 50 nM for 2acp12 and
from Kd = 300 to 30 nM for 5ins16 (Fig. S3A); due to its low initial
affinity, no estimate was made for the affinity of 5acp14. Mapped
on the design models, none of the mutations isolated by screening
occurred at positions that were in direct contact with the target
proteins, supporting the designed binding mode; instead, several
mutations to positive charges were introduced at the periphery
of the 5ins16 binding surface, likely improving long-range elec-
trostatic attraction to the negative charge on insulin’s surface (Fig.
3 and Dataset S1). We additionally isolated two mutations in the
framework of 5ins16 near H3. Since mutations were only observed
in the framework and away from the designed contact surface with
insulin, we concluded that the binding surfaces largely formed as
designed but that the H3 backbone was not optimally configured

Fig. 2. Backbone segmentation of the antibody Fv. (Left) Conventional antibody design and engineering studies segmented the Fv into seven parts (a
framework and six CDRs) and generated antibodies by combining segments from various antibodies. (Right) Segmentation used by AbDesign in design cycle
5, by contrast, uses four parts: two comprising CDRs 1 and 2 and the framework and two comprising CDR 3. The latter segmentation maintains the structural
interactions between CDRs 1 and 2 and the framework, resulting in improved core packing. The conserved disulfides are shown as sticks in structural rep-
resentations and as yellow dots on the primary-sequence representation. vH, heavy-chain variable domain; vL, light-chain variable domain.
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by neighboring framework residues. We similarly isolated four
mutations in 2acp12 and one mutation in 5acp14, all located in
the framework at a distance >8 Å from the designed antigen-
binding surface.
We sought to further verify the binding mode by introducing

point mutations in the designed antibody CDRs. All mutations
introduced in the core of the binding surface on 2acp12 and
5ins16 decreased binding (Fig. 3 and Dataset S1). Conversely,
mutations to charged amino acids >8 Å from the designed binding
surface increased affinity, likely due to electrostatic attraction. We
next assessed the binding mode from the ligand’s side of the in-
terface by introducing mutations to ACP, both inside and outside
the surfaces through which the antibodies were designed to in-
teract with it. In agreement with the design models, mutations on
ACP >8 Å from the binding surface did not perturb its binding to
2acp12 or 5acp14, whereas four of five mutations at the designed
binding interface of 2acp12 and ACP interfered to some extent with
binding (on 2acp12: Ala34Asn and Ser100Trp; on ACP: Asp45Arg
and Ala50Glu); the fifth interface-core mutation (Val71Glu) im-
proved affinity to 2acp12. The observation that most but not all core
mutations in the 2acp12 interface decrease binding indicates that
the binding mode of 2acp12 and ACP overlaps with the designed
mode, but perhaps not in its entirety. Collectively, the mutational
analysis suggested that the antibodies bound through at least
parts of the designed surfaces, but similar to germline antibodies,
remained flexible, and therefore susceptible to affinity-enhancing
framework mutations (27).
By this point, we had tested the designed antibodies as scFv

constructs, where the light and heavy chains were fused and at-
tached to the yeast cell surface. We next tested the antibodies as
soluble two-chain antigen-binding fragments (Fabs). The three
antibodies showed apparent melting temperatures (Tm) in the
range of 57–79 °C (Fig. S3B), whereas natural affinity-matured

Fabs often show Tms around 70 °C (28). Furthermore, measured
by surface plasmon resonance, the Fabs had affinities in the range
of 50–100 nM for their targets, despite the fact that the designs
contained dozens of mutations compared with mammalian anti-
body germlines (Fig. S3C).
Finally, we determined the X-ray crystallographic structure of

two designed Fabs, 5ins14 and the affinity-matured 5ins16_ev, both
without ligand. Electron density was observed in all regions of
the designed antibodies, allowing unambiguous assignment of the
structure (Fig. S4A and Table S2). Furthermore, a comparison with
the designed models revealed atomic accuracy throughout most of
the Fv, with total root-mean-square deviations (rmsds) of 0.4 Å
and 0.7 Å, respectively (Fig. 4), despite the fact that in design cycle
5, the entire Fv was subjected to backbone and sequence design.
Detailed packing in the cores of the light chains, the light–heavy
chain heterodimer interfaces, and hydrogen-bonding networks
fastening the CDRs to the framework were also atomically accu-
rate. The largest difference between the design model and exper-
imental structure was in the interaction between H1 and H3 of
5ins16, where residues at the stem of H3 were packed differently,
leading to a tilt in the H3 experimental structure and to a con-
formational change in H1 (1.8-Å and 2.0-Å rmsds for H3 and H1,
respectively; Fig. 4A). We also noticed that H1 and H3 were sta-
bilized in the altered conformation by packing interactions among
crystallographic-symmetry neighbors (Fig. S4B). Nevertheless,
these changes did not propagate to other parts of the Fv, high-
lighting its structural modularity. We were unable to obtain a
crystal structure of 5ins16 bound to insulin, but we noted in our
design model that the antibody engaged insulin primarily through
H2, L1, and L3, where design accuracy was high (rmsd < 0.6 Å;
Fig. 4A). To verify that the crystal structure was indeed compatible
with insulin binding, we computationally aligned the crystal
structure with the 5ins16 design model, producing a model of

Fig. 3. Mutation analysis of designed binding modes. (Top) Design models were visually inspected, and mutations were introduced manually to improve
packing and/or solvation (red spheres). For assessing the binding mode, three to four single-point mutations (cyan spheres) were introduced in designed
antibodies 2acp12 and 5ins16 (5acp14 was not subjected to mutagenesis because of low affinity). (Bottom) Relative binding signal of variants containing
single-point mutations in ligand-binding sites (gray bars) or outside the ligand-binding sites (black bars). Additional manual mutations were introduced on
the ligand ACP (cyan spheres) in the intended binding surface (gray bars) or outside the binding surface (black bars) and tested for binding of the affinity-
matured antibodies. Finally, mutations were introduced in the designed antibodies also through random mutagenesis and in vitro selection of improved
binders (blue spheres). Mutations at the binding surface reduced affinity, except for Val71Glu on ACP, which enhanced binding of the affinity-matured
2acp12_ev. Mutations away from the interface, including those isolated from in vitro selection, increased binding affinity. Binding signals were tested in yeast
surface display with the antibodies expressed as scFv and the ligand at 50 nM concentration for 2acp12_ev and at 1 μM concentration for 2acp12, 5acp14_ev,
and 5ins16. SEs from the mean for two independent experiments are indicated.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1707171114 Baran et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707171114/-/DCSupplemental/pnas.1707171114.sd01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707171114/-/DCSupplemental/pnas.201707171SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707171114/-/DCSupplemental/pnas.201707171SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707171114/-/DCSupplemental/pnas.201707171SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707171114/-/DCSupplemental/pnas.201707171SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707171114/-/DCSupplemental/pnas.201707171SI.pdf?targetid=nameddest=SF4
www.pnas.org/cgi/doi/10.1073/pnas.1707171114


the crystal structure bound to insulin through the designed
binding mode. We then performed local all-atom docking
simulations using RosettaDock to identify low-energy confor-
mations (29); only limited side-chain conformation changes
were observed between the 5ins16 design and this minimized
conformation, suggesting that the experimental structure is
compatible with binding to insulin through the designed bind-
ing mode (Fig. S4C). Furthermore, 5ins14 showed high accu-
racy throughout the entire Fv, including in regions with long
loops and buried charges (Fig. 4B). We therefore concluded
that the algorithm generated antibodies that were substantially
different from natural antibody germline sequences (Table S1),
and yet showed similar stability and binding properties; the
designed antibodies also showed atomic accuracy in the
framework and majority of the CDRs, including in regions
containing nonideal features, such as long loops and buried
polar networks, that have so far defied binder design.

Discussion
The antibody Fv is a larger and more complex structure than the
proteins that have previously been the subject of fold design (5, 8,
12, 16), yielding three principal complications for computational
design. First, as the Fv is a heterodimer, accurate design of not
only one but two domains, as well as their interaction, is required.
Second, each of these domains comprises long loops in its CDRs,
which are stabilized by irregular, sequence-specific interactions
within the CDRs and long-range interactions with the framework.
Third, the Fv contains buried polar networks that are, on the one
hand, crucial for configuring the CDRs but, on the other hand,
may be disfavored from the standpoint of native-state energy,
which favors completely hydrophobic cores. Indeed, buried polar
networks in fold design have only been implemented in symmetric
homo-oligomers, and have required specialized search heuristics
(30). To overcome the multiplex challenge of maintaining
the architecture of the Fv while incorporating the required

nonideal features, the AbDesign algorithm used a combina-
tion of sequence and structure constraints derived from a bio-
informatics analysis of natural Fvs. Despite the use of constraints,
the sequence and backbone-conformation space was still vast,
and allowed us to design binders for two arbitrarily chosen
small proteins. Designed structures furthermore showed atomic
accuracy in the framework, heterodimer interface, and in one
of the designs in all CDRs.
Due to the size and complexity of the Fv structure, we found

that two types of modeling constraints were required to make
stable and expressible antibodies: (i) conformation-specific
sequence constraints, and (ii) use of large backbone fragments
that included CDRs 1 and 2 and their supporting framework;
these constraints reduce and simplify sequence and conforma-
tion space, respectively. Both constraints are inspired by pro-
tein-engineering strategies. The use of sequence constraints in
AbDesign has parallels in “consensus” design, which has been
used to improve the stability of antibodies, enzymes, and repeat
proteins (17, 31, 32). However, instead of using the most likely
amino acid identity at each position, as in consensus design,
AbDesign chooses the energetically most favorable one out of
all identities that are likely at each position; these sequence
constraints thereby allow room to optimize the sequence for the
requirements of antigen binding, particularly in the hyper-
variable CDRs (21). Furthermore, the backbone-conformation
fragments used in AbDesign are similar in spirit to the large
gene fragments used in the schema structure-based genetic
recombination of homologs, which has been successfully
implemented in enzyme engineering (33); however, AbDesign
optimizes the sequence of the combined fragments to increase
antibody stability, rather than using the natural sequences as
they are. Hence, the AbDesign algorithm combines evolutionary-
based protein-engineering strategies with atomistic design, and the
results indicate that this combination yields high stability and
expressibility in designed antibodies.

Fig. 4. Comparison of design models and experimental structures of 5ins16_ev and 5ins14. In both designed antibodies, the light chain (LC), the backbone
conformation of the framework, and the LC–heavy chain (HC) heterodimer interfaces are atomically accurate. (A) 5ins16_ev: Backbone and side-chain packing
deviations occur in H1 and H3, but other regions, including buried hydrogen-bonding networks (dashed lines) involving L1, are atomically accurate. (B) 5ins14:
Core packing of hydrophobic residues on the framework specifying the L1 conformation, as well as a buried polar network specifying H1, are atomically
accurate. Model and experimental structures are colored in lime and purple, respectively. Antibodies were expressed and crystalized as Fabs, and only the Fvs
are shown.

Baran et al. PNAS Early Edition | 5 of 6

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707171114/-/DCSupplemental/pnas.201707171SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707171114/-/DCSupplemental/pnas.201707171SI.pdf?targetid=nameddest=ST1


Antibodies are ubiquitous in biomedical research and clinical
practice. AbDesign therefore holds promise for the future generation
of specific and stable research, diagnostic, and therapeutic
tools. To achieve these goals, efforts should now be directed to
targeting surfaces that have been traditionally difficult for anti-
body engineering, such as conserved sites in large human pro-
teins, and to achieve consistently high design accuracy in all
CDRs, including the flexible H3. Finally, the evolutionary-based
constraints we adopted, and indeed the general iterative-learn-
ing approach through algorithm development and experimental
testing, are applicable to any protein family of modular fold,
including other large proteins that serve as binders or enzymes
(12, 33). Future binders and enzymes may therefore be built
by modular assembly of backbones from natural homologs, and
then optimized through computational design for stability and
molecular function.

Methods
Computational Methods. Computational design, modeling, and bioinformatics
analysis were performed as described in SI Methods. RosettaScripts and com-
mandline instructions are available in Dataset S2.

Experimental Procedures. Cloning, expression, purification, yeast display anal-
ysis, thermal stability, and structure determination were performed as de-
scribed in SI Methods.
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